GORENSTEIN DIMENSION AND AS-GORENSTEIN ALGEBRAS

KENTA UEYAMA

Abstract. The purpose of this paper is to connect the notion of Gorenstein dimension with AS-Gorenstein algebras. In particular, we show that a noetherian connected graded algebra having a balanced dualizing complex is AS-Gorenstein if the balanced dualizing complex has finite Gorenstein dimension. As a preparation, we generalize the Auslander-Bridger formula to the class of noncommutative noetherian connected graded algebras having balanced dualizing complexes.

1. Introduction

In the late 1960s, the Gorenstein dimension (G-dimension for short) for finitely generated modules was introduced by Auslander [3] and developed by Auslander and Bridger [4]. G-dimension is a generalization of projective dimension. Moreover, they proved the following characterization of Gorenstein rings. A commutative noetherian local ring \(R \) is Gorenstein if and only if every finitely generated module over \(R \) has finite G-dimension. They also proved that G-dimension satisfies Auslander-Buchsbaum-type formula, namely, if a finitely generated module \(M \) over a commutative noetherian local ring \(R \) has finite G-dimension, then G-dimension of \(M \) is given by \(\text{depth } R - \text{depth } M \). This formula is called the Auslander-Bridger formula.

Since then, relationships between G-dimension and Gorenstein rings have been studied deeply in commutative ring theory. For example, G-dimension for complexes with finitely generated cohomologies was studied by Yassemi [20] using reflexive complexes. The category of complexes of finite G-dimension is closely related to two important categories called the Auslander class and the Bass class, and some characterizations of Gorenstein rings were shown in terms of these categories (see [5, Chapter 3]). In another direction, Enochs and Jenda [8] defined a homological dimension called the Gorenstein projective dimension for non-finitely generated modules. They studied it when the ring is coherent or \(n \)-Gorenstein. For finitely generated modules over commutative noetherian rings, it coincides with the G-dimension. The Gorenstein homological dimensions have become an active area of research. See [5], [9] and [10] for more details.

Meanwhile, AS-Gorenstein algebras introduced by Artin and Schelter are an important class of algebras studied in noncommutative algebraic geometry (see [13], [14], [22] etc.). An AS-Gorenstein algebra is a noncommutative graded analogue of a commutative local Gorenstein ring.

2010 Mathematics Subject Classification. 16W50, 16E10, 16E65.

Key words and phrases. AS-Gorenstein algebra, Gorenstein dimension, Auslander-Bridger formula.

The author was supported by Research Fellowships of the Japan Society for the Promotion of Science for Young Scientists (No. 23-2233).
The purpose of this paper is to connect the notion of G-dimension with AS-Gorenstein algebras. In particular, we will give some characterizations of AS-Gorenstein algebras by using the finiteness of G-dimension. Indeed, we will prove the following statement.

Theorem 1.1. (See Theorem 5.7.) Let A be a noetherian connected graded algebra having a balanced dualizing complex. Then the following are equivalent.

1. A is AS-Gorenstein.
2. $\text{G-dim}_A X < \infty$ for any $X \in \mathcal{D}^b_{fg}(A)$.
3. $\text{G-dim}_A M < \infty$ for any $M \in \text{grmod} A$.
4. $\text{G-dim}_A k < \infty$.

This is a noncommutative version of [4, Theorem 4.20] and [5, Theorem 2.3.14]. The balanced dualizing complex introduced by Yekutieli [21] plays an important role in the study of homological properties of noncommutative algebras. For example, noncommutative versions of Bass theorem and the no-holes theorem can be proved by using balanced dualizing complexes (see [11], [19]). In the commutative case, Theorem 1.1 is proved without the assumption that the (balanced) dualizing complex exists. Remarkably, however, there is a noetherian noncommutative connected graded algebra which does not satisfy (4) \Rightarrow (1), so the assumption that an algebra has a balanced dualizing complex is a necessary condition.

Let A be a noetherian connected graded algebra having a balanced dualizing complex. In [6], Dong and Wu proved the following theorem. If the balanced dualizing complex of A has finite projective dimension, then A is AS-Gorenstein. Since G-dimension is a generalization of projective dimension, the following is a natural question to ask. If the balanced dualizing complex of A has finite G-dimension, then is A AS-Gorenstein? The main result of this paper is to show that the above question is true.

Theorem 1.2. (See Theorem 5.10.) Let A be a noetherian connected graded algebra having a balanced dualizing complex D. Then the following are equivalent.

1. A is AS-Gorenstein.
2. $\text{G-dim}_A D < \infty$.

This result can be viewed as a noncommutative version of [5, Theorem 3.3.5]. However, our proof is different from that of [5, Theorem 3.3.5] in the commutative case. [5] uses the fact that any module over a commutative ring R is automatically an R-R bimodule.

As a corollary, we see that if A admits a totally reflexive module having finite injective dimension, then A is AS-Gorenstein. To prove the main result, we generalize the Auslander-Bridger formula to the class of noncommutative noetherian connected graded algebras having balanced dualizing complexes (see Theorem 4.3).

2. Notations and Preliminaries

Throughout this paper, we fix a field k. Let A be a connected graded k-algebra, that is, $A = \bigoplus_{i \in \mathbb{N}} A_i$, such that $A_0 = k$. We write $\mathfrak{m} = \bigoplus_{i \geq 1} A_i$ for the unique maximal homogeneous two-sided ideal of A, and we view $k = A/\mathfrak{m}$ as a graded A-module. We denote by $\text{GrMod} A$ the category of graded right A-modules, and
by grmod\textsubscript{A} the full subcategory consisting of finitely generated graded right \textit{A}-modules. Morphisms in GrMod\textsubscript{A} are right \textit{A}-module homomorphisms preserving degrees.

For a graded module $M \in$ GrMod\textsubscript{A} and an integer $n \in \mathbb{Z}$, we define the truncation $M_{\geq n} := \bigoplus_{i \geq n} M_i \in$ GrMod\textsubscript{A} and the shift $M(n) \in$ GrMod\textsubscript{A} by $M(n)_i := M_{n+i}$ for $i \in \mathbb{Z}$. For $M, N \in$ GrMod\textsubscript{A}, we write

$$\text{Ext}^i(A, N) = \bigoplus_{n \in \mathbb{Z}} \text{Ext}^i_{\text{GrMod}\textsubscript{A}}(M, N(n)).$$

Let $\tau \in \text{Aut}_k \textit{A}$ be a graded algebra automorphism. For a graded right \textit{A}-module $M \in$ GrMod\textsubscript{A}, we define a new graded right \textit{A}-module $M_{\tau} \in$ GrMod\textsubscript{A} by $M_{\tau} = M$ as graded vector spaces with the new right action $m \ast a = m\tau(a)$ for $m \in M$ and $a \in \textit{A}$.

Let \textit{A}, \textit{B} be connected graded algebras. The category of graded left \textit{A}-modules is denoted by GrMod\textsubscript{\textit{A}op}, where \textit{A}op is the opposite algebra. The category of graded \textit{B}-\textit{A} bimodules is denoted by GrMod(\textit{B}op \otimes \textit{A}). In particular, the category of graded \textit{A}-\textit{A} bimodules is denoted by GrMod \textit{A}, where \textit{A}op = \textit{A}op \otimes \textit{A}. For any $M \in$ GrMod(\textit{B}op \otimes \textit{A}), we denote by $M^* := \text{Hom}_k(M, k)$ the Matlis dual of M. By definition, M^* has a graded \textit{A}-\textit{B} bimodule structure.

The derived category of GrMod\textsubscript{\textit{A}} is denoted by $\mathcal{D}(\textit{A})$. We write for $\mathcal{D}_{fg}(\textit{A})$ the full subcategory of $\mathcal{D}(\textit{A})$ consisting of complexes whose cohomologies are all finitely generated \textit{A}-modules. For any $X \in \mathcal{D}(\textit{A})$, we denote by $h^i(X)$ the i-th cohomology module of X, and define

$$\sup X = \sup \{i \mid h^i(X) \neq 0\}$$

and

$$\inf X = \inf \{i \mid h^i(X) \neq 0\}.$$
Let $X \in \mathcal{D}^-(S^{\text{op}} \otimes A), Y \in \mathcal{D}^-(A^{\text{op}} \otimes B), Z \in \mathcal{D}^+(R^{\text{op}} \otimes B)$. Then there is a natural isomorphism in $\mathcal{D}^+(R^{\text{op}} \otimes S)$,

$$\mathcal{RHom}_B(X \otimes_A^L Y, Z) \cong \mathcal{RHom}_A(X, \mathcal{RHom}_B(Y, Z)).$$

(3) Let $X \in \mathcal{D}^-_f(A^{\text{op}}), Y \in \mathcal{D}^b(A^{\text{op}} \otimes B), Z \in \mathcal{D}^+(R^{\text{op}} \otimes B)$. If either $\text{pd}_{A^{\text{op}}} X < \infty$ or $\text{id}_B Z < \infty$, then there is a natural isomorphism in $\mathcal{D}(R^{\text{op}})$,

$$\mathcal{RHom}_B(Y, Z) \otimes_A^L X \cong \mathcal{RHom}_B(\mathcal{RHom}_{A^{\text{op}}}(X, Y), Z).$$

Lemma 2.3. (cf. [15, Lemma 1.3]) If $X \in \mathcal{D}^-(B^{\text{op}} \otimes A), Y \in \mathcal{D}^+(C^{\text{op}} \otimes A)$, then

$$\inf \mathcal{RHom}_A(X, Y) \geq \inf Y - \sup X.$$

Lemma 2.4. (cf. [13, Lemma 1.8]) If $X \in \mathcal{D}^-(B^{\text{op}} \otimes A), Y \in \mathcal{D}^-(A^{\text{op}} \otimes C)$, then

$$\sup X \otimes_A^L Y \leq \sup X + \sup Y.$$

Moreover, if $h_{\sup}^X X, h_{\sup}^Y Y$ are left bounded, then $\sup X \otimes_A^L Y = \sup X + \sup Y$.

3. Gorenstein Dimension

First, we recall the definition of G-dimension of finitely generated modules and of bounded complexes with finitely generated cohomologies. Throughout this section, A is a noetherian connected graded algebra.

If $M \in \text{GrMod} A$, then we define $M^\vee = \text{Hom}_A(M, A) \in \text{GrMod} A^{\text{op}}$. Similarly, if $N \in \text{GrMod} A^{\text{op}}$, then we define $N^\vee = \text{Hom}_{A^{\text{op}}}(N, A) \in \text{GrMod} A$.

Definition 3.1. (cf. [4, Chapter 3], [5, Definition 1.2.3]) Let A be a noetherian connected graded algebra.

(1) We say that $M \in \text{grmod} A$ is totally reflexive if

(a) The natural homomorphism $M \to M^{\vee \vee}$ is an isomorphism.

(b) $\text{Ext}_A^i(M, A) = \text{Ext}_{A^{\text{op}}}^i(M^\vee, A) = 0$ for all $i > 0$.

(2) Let $M \in \text{grmod} A$. If there exists an exact sequence

$$0 \to G_n \to G_{n-1} \to \cdots \to G_1 \to G_0 \to M \to 0$$

of graded right A-modules such that each G_i is totally reflexive, then we say that M has G-dimension at most n. If such an integer n does not exist, then we say that M has infinite G-dimension, and write $\text{G-dim}_A M = \infty$. If M has G-dimension at most n but does not have G-dimension at most $n - 1$, then we say that M has G-dimension n, and write $\text{G-dim}_A M = n$. We set $\text{G-dim}_A 0 = -\infty$.

Lemma 3.2. The following hold.

(1) Let $M \in \text{grmod} A$. If $\text{G-dim}_A M < \infty$, then

$$\text{G-dim}_A M = \sup \mathcal{RHom}_A(M, A) = \sup \{i \mid \text{Ext}_A^i(M, A) \neq 0\}.$$

(2) Let $0 \to K \to G \to M \to 0$ be an exact sequence in $\text{grmod} A$. If $\text{G-dim}_A G = 0$, then $\text{G-dim}_A K = \sup \{\text{G-dim}_A M - 1, 0\}$.

Proof. See [5, Theorem 1.2.7] and [5, Corollary 1.2.9].

If $X \in \mathcal{D}^b(A)$, then we define $X^{\dagger} = \mathcal{RHom}_A(X, A) \in \mathcal{D}(A^{\text{op}})$. Similarly, if $Y \in \mathcal{D}^b(A^{\text{op}})$, then we define $Y^{\dagger} = \mathcal{RHom}_{A^{\text{op}}}(Y, A) \in \mathcal{D}(A)$.
Definition 3.3. The reflexive class $\mathcal{R}(A)$ is the full subcategory of $D^b_{fg}(A)$ consisting of the complexes X satisfying

1. $X^\dagger = R\text{Hom}_A(X, A) \in D^b_{fg}(A^{\text{op}})$, and
2. The natural morphism $X \to X^{\dagger \dagger}$ is an isomorphism in $D(A)$.

Lemma 3.4. Let $M \in \text{grmod } A$. Then $G\text{-dim}_A M < \infty$ if and only if $M \in \mathcal{R}(A)$.

Proof. We prove this along the same lines as in [20, Theorem 2.7]. Assume that $G\text{-dim}_A M < \infty$. Since $\sup R\text{Hom}_A(M, A) < \infty$ by Lemma 3.2(1), we see $M^! \in D^b_{fg}(A)$, so we now prove that $M \cong M^{\dagger \dagger}$ in $D(A)$ by using induction on $g = G\text{-dim}_A M$. If $g = 0$, then $\text{Ext}_A^i(M, A) = 0$ for all $i > 0$, so $M^! \cong M^{\vee}$. Also, since $\text{Ext}^i_A^{\text{op}}(\text{Hom}_A(M, A), A) = 0$ for all $i > 0$, we have $M^{\dagger \dagger} \cong M^{\vee \vee} \cong M$. Suppose that $g \geq 1$. Let $0 \to K \to F \to M \to 0$ be an exact sequence where F is a free A-module. Then $G\text{-dim}_A K = G\text{-dim}_A M - 1$ by Lemma 3.2(2). Thus we see that $M \cong M^{\dagger \dagger}$ in $D(A)$ by the following commutative diagram

$$
\begin{array}{ccc}
K & \longrightarrow & F \\
\downarrow^{\cong} & & \downarrow^{\cong} \\
K^{\dagger \dagger} & \longrightarrow & M^{\dagger \dagger} \\
\end{array}
$$

and using [7, IV.1, Corollary 4(a)]. Conversely, assume that $M \in \mathcal{R}(A)$. We prove $G\text{-dim}_A M < \infty$ by using induction on $s = \sup R\text{Hom}_A(M, A)$. If $s = 0$, then $\text{Ext}^i_A(M, A) = 0$ for all $i > 0$, so $M \cong M^{\dagger \dagger} \cong R\text{Hom}_A^{\text{op}}(\text{Hom}_A(M, A), A)$. Since $h^i(M) = h^i(R\text{Hom}_A^{\text{op}}(\text{Hom}_A(M, A), A)) = \text{Ext}^i_A^{\text{op}}(\text{Hom}_A(M, A), A) = 0$ for any $i > 0$, we see that $M \cong M^{\dagger \dagger} \cong M^{\vee \vee}$, so M is totally reflexive. Suppose that $s \geq 1$. Let $0 \to K \to F \to M \to 0$ be an exact sequence where F is a free A-module. Applying the functor $(-)^{\vee}$, we have $\sup R\text{Hom}_A(K, A) \leq s - 1$. Since $F, M \in \mathcal{R}(A)$, we see $K \cong K^{\dagger \dagger}$, and hence $G\text{-dim}_A K < \infty$. We get $G\text{-dim}_A M < \infty$ by Lemma 3.2(2). \qed

Definition 3.5. [20, Definition 2.8] Let A be a noetherian connected graded algebra, and $X \in D^b_{fg}(A)$. If $X \in \mathcal{R}(A)$, then we say that X has finite G-dimension. If X has finite G-dimension, then we define G-dimension of X by

$$G\text{-dim}_A X = \sup R\text{Hom}_A(X, A) < \infty.$$

If $X \notin \mathcal{R}(A)$, we write $G\text{-dim}_A X = \infty$.

Thus for $X \in D^b_{fg}(A)$, $G\text{-dim}_A X < \infty$ if and only if $X \in \mathcal{R}(A)$ by definition. It is easy to see that there is an inequality $G\text{-dim}_A X \leq \text{pd}_A X$, and the equality holds if $\text{pd}_A X < \infty$ (see [5, Proposition 2.3.10]).

Lemma 3.6. Let $X, Y \in D^b_{fg}(A)$. Then $X \oplus Y \in \mathcal{R}(A)$ if and only if $X, Y \in \mathcal{R}(A)$. In fact, $G\text{-dim}_A (X \oplus Y) = \sup \{G\text{-dim}_A X, G\text{-dim}_A Y\}$.

Proof. Left to the reader. \qed

Next, we define an AS-Gorenstein algebra and study relationships between the finiteness of G-dimension and such an algebra. “AS” stands for “Artin-Schelter” since this definition is a generalization of the notion of regular rings as introduced by Artin and Schelter [1].
Definition 3.7. A noetherian connected graded algebra A is called a right AS-Gorenstein algebra if

- $\text{id}_A A = d < \infty$, and
- $\text{Ext}^i_A(k, A) \cong \begin{cases} k(\ell) & \text{for some } \ell \in \mathbb{Z} \text{ if } i = d, \\ 0 & \text{if } i \neq d. \end{cases}$

Left AS-Gorenstein algebras are defined similarly. We say that A is AS-Gorenstein if A is both right and left AS-Gorenstein.

By [17, Theorem 2.4], any noetherian connected graded algebra with finite global dimension has finite Gelfand-Kirillov dimension. Hence if A is right AS-Gorenstein (in the sense defined above) of finite global dimension, then A is regular in the sense of [1].

The χ-condition defined below is natural and essential in noncommutative algebraic geometry (see [2]).

Definition 3.8. [2, Definition 3.2] Let A be a connected graded algebra, and $M \in \text{GrMod} A$. We say that M satisfies the condition $\chi_d(M)$ if $\text{Ext}^i_A(k, M)$ are finite dimensional over k for all $0 \leq i \leq d$. We say that M satisfies the condition $\chi(M)$ if every $\text{Ext}^i_A(k, M)$ are finite dimensional over k. Moreover, we say that A satisfies the condition χ if $\chi(M)$ hold for all $M \in \text{grmod} A$.

Now, we give a characterization of AS-Gorenstein algebras under the assumption that algebras satisfies the χ-condition. Ideas come from [12].

Proposition 3.9. Let A be a noetherian connected graded algebra. Assume that $\text{depth}_A A = \text{depth}_{A^{op}} A = d$ and that A satisfies the condition $\chi_d(A)$. Then the following are equivalent.

1. A is AS-Gorenstein.
2. $\text{G-dim}_A M \leq d$ for any $M \in \text{grmod} A$, and $\text{G-dim}_{A^{op}} N \leq d$ for any $N \in \text{grmod} A^{op}$.

Proof. (1) \Rightarrow (2): Since A is AS-Gorenstein, the balanced dualizing module ω_A of A (see Definition 5.8) is isomorphic to $A_{d}(\ell)$ as graded A-A bimodules for some graded algebra automorphism $\nu \in \text{Aut}_{k} A$, so the result follows from [15, Theorem 4.7].

(2) \Rightarrow (1): By lemma 3.2(1), $\text{Ext}^i_A(M, A) = 0$ for any $M \in \text{grmod} A$ and any $i > d$, so $\text{id}_A A \leq d < \infty$. Because $\text{depth}_A A = d$, we see $\text{G-dim}_A k = d$, so it follows that $\text{id}_A A = d$ and $\text{RHom}_A(k, A) \cong L[-d]$ where $L = \text{Ext}_A^d(k, A) \in \text{grmod} A^{op}$. By Lemma 3.4, we have

$$\text{RHom}_{A^{op}}(L, A) \cong \text{RHom}_{A^{op}}(\text{RHom}_A(k, A), A)[-d] \cong k[-d],$$

that is,

$$\text{Ext}^i_{A^{op}}(L, A) \cong \begin{cases} k & \text{if } i = d, \\ 0 & \text{if } i \neq d. \end{cases} \tag{3.1}$$

Since $\chi_d(A)$ holds, $\dim_k L < \infty$, so we can construct a short exact sequence

$$0 \rightarrow k(\ell) \rightarrow L \rightarrow L' \rightarrow 0$$

where $\ell = \max\{i \mid L_i \neq 0\}$. This gives a long exact sequence

$$\cdots \rightarrow \text{Ext}^d_{A^{op}}(L', A) \rightarrow \text{Ext}^d_{A^{op}}(L, A) \rightarrow \text{Ext}^d_{A^{op}}(k(-\ell), A) \rightarrow 0.$$
Since $\text{Ext}^d_{A^{\text{op}}}(k(-\ell), A) \neq 0$, (3.1) implies that $\text{Ext}^d_{A^{\text{op}}}(k, A) \cong k(-\ell)$. The assertion follows by left-right symmetry. \qed

In addition, by Zhang’s result [22], we have the following characterization.

Proposition 3.10. Let A be a noetherian connected graded algebra satisfying the condition $\chi(A)$ on both sides. Then the following are equivalent.

1. A is AS-Gorenstein.
2. There exists $n \in \mathbb{N}$ such that $G\text{-dim}_A M \leq n$ for any $M \in \text{grmod } A$, and $G\text{-dim}_A^{\text{op}} N \leq n$ for any $N \in \text{grmod } A^{\text{op}}$.

Proof.

(1) \Rightarrow (2): The same as above.

(2) \Rightarrow (1): By lemma 3.2(1), we have $\text{Ext}^i_A(M, A) = 0$ for any $M \in \text{grmod } A$ and any $i > n$, so $\text{id}_A A \leq n < \infty$. Since A satisfies $\chi(A)$ on both sides, $\text{Ext}^i_A(k, A)$ and $\text{Ext}^i_{A^{\text{op}}}(k, A)$ are finite dimensional over k. The assertion follows by using [22, Theorem 0.3]. \qed

4. The Auslander-Bridger Formula

Definition 4.1. [21, Definitions 3.3, 4.1] Let A be a noetherian connected graded algebra. A complex $D \in D^b(A^e)$ is called dualizing if it satisfies the following conditions:

- $\text{id}_A D < \infty$, $\text{id}_{A^{\text{op}}} D < \infty$,
- D has finitely generated cohomologies over A and A^{op}, and
- The natural morphisms $A \rightarrow \text{RHom}_A(D, D)$, and $A \rightarrow \text{RHom}_{A^{\text{op}}}(D, D)$ are isomorphisms in $D(A^e)$.

A dualizing complex D over A is called balanced if there are isomorphisms

$$\text{RHom}_m(D) \cong \text{RHom}_{m^{\text{op}}}(D) \cong A^*$$

in $D(A^e)$.

By [21, Proposition 3.5], if D is a dualizing complex, then the functors

$$\text{RHom}_A(-, D) : D(A) \rightarrow D(A^{\text{op}}) \text{ and } \text{RHom}_{A^{\text{op}}(-, D)} : D(A^{\text{op}}) \rightarrow D(A)$$

define a duality between $D^b_{fg}(A)$ and $D^b_{fg}(A^{\text{op}})$.

Later, we will assume that A has a balanced dualizing complex. By the existence theorem due to Van den Bergh [18, Theorem 6.3], we see that if A admits a balanced dualizing complex, then A satisfies the χ-condition on both sides. In addition, we see that many graded algebras have balanced dualizing complexes. For example, by [11, Lemma 3.1 and Proposition 3.2], a graded quotient of an AS-Gorenstein algebra has a balanced dualizing complex. In particular, if A is an AS-Gorenstein algebra, then A has a balanced dualizing complex $A_{\nu}(-\ell)[d]$ for some graded algebra automorphism $\nu \in \text{Aut}_k A$ (see [11, Theorem 1.2]).

Lemma 4.2. Let A be a noetherian connected graded algebra having a balanced dualizing complex D. For $X \in D^b_{fg}(A)$, we have $\text{depth}_A X = - \sup \text{RHom}_A(X, D)$. In particular, $\text{depth}_A A = - \sup D$.

Proof. This follows from [11, Proposition 4.3] and [18, Theorem 5.1]. \qed
Let A be a noetherian connected graded algebra satisfying χ and $X \in D^b_{fg}(A)$ having finite projective dimension. The Auslander-Buchsbaum formula

$$pd_A X + \text{depth}_A X = \text{depth}_A A$$

has already proved by Jørgensen in [12, Theorem 3.2]. Surprisingly, Rogalski and Sierra [16] found that there is a noetherian connected graded algebra which does not satisfy the Auslander-Buchsbaum formula, that is, the χ-condition is in some sense necessary for Jørgensen’s results. We now prove that the Auslander-Bridger formula also holds for the class of noncommutative noetherian connected graded algebras having balanced dualizing complexes.

Theorem 4.3 (Auslander-Bridger formula). Let A be a noetherian connected graded algebra with a balanced dualizing complex D. Given $X \in D^b_{fg}(A)$ with $\text{G-dim}_A X < \infty$, we have

$$\text{G-dim}_A X + \text{depth}_A X = \text{depth}_A A.$$

Proof. Since $X \in \mathcal{R}(A)$, we have

$$D \otimes_A \text{RHom}_A(X, A) \cong \text{RHom}_A(A, D) \otimes_A \text{RHom}_A(X, A)$$

by Lemma 2.2(3)

$$\cong \text{RHom}_A(X^{\oplus}, D) \cong \text{RHom}_A(A, D),$$

so it follows that

$$\text{depth}_A X = - \sup \text{RHom}_A(X, D) = - \sup (D \otimes_A \text{RHom}_A(X, A))$$

$$= - \sup D - \sup \text{RHom}_A(X, A) = \text{depth}_A A - \text{G-dim}_A X$$

by Lemma 4.2 and Lemma 2.4. \qed

5. Characterizations of AS-Gorenstein Algebras

Throughout this section, we assume that A is a noetherian connected graded algebra with a balanced dualizing complex D.

Definition 5.1. We define the full subcategories $\mathcal{F}(A)$ and $\mathcal{I}(A)$ of $D^b_{fg}(A)$ consisting of the complexes $X \in D^b_{fg}(A)$ having finite flat and injective dimension, respectively.

Jørgensen [13, Corollary 4.6] proved that if A is a noetherian connected graded algebra with a balanced dualizing complex, then A is right AS-Gorenstein if and only if it is left AS-Gorenstein. Moreover, the following result was proved by Dong and Wu.

Theorem 5.2. [6, Theorem 3.5] The following are equivalent.

1. A is AS-Gorenstein.
2. $\mathcal{F}(A) = \mathcal{I}(A)$.
3. $A \in \mathcal{I}(A)$.
4. $D \in \mathcal{F}(A)$.

In this section, we study the Auslander and Bass classes, and establish some characterizations of AS-Gorenstein algebras by using these classes and G-dimension.

Definition 5.3. The Auslander class $\mathcal{A}(A)$ is the full subcategory of $D^b_{fg}(A)$ consisting of the complexes X satisfying
(1) $X \otimes_A^L D \in \mathcal{D}^b_{fg}(A)$, and
(2) The natural morphism $\gamma_X : X \to \mathcal{R}\text{Hom}_A(D, X \otimes_A^L D)$ is an isomorphism in $\mathcal{D}(A)$.

The Bass class $\mathcal{B}(A)$ is the full subcategory of $\mathcal{D}^b_{fg}(A)$ consisting of the complexes X satisfying
(1) $\mathcal{R}\text{Hom}_A(D, X) \in \mathcal{D}^b_{fg}(A)$, and
(2) The natural morphism $\xi_X : \mathcal{R}\text{Hom}_A(D, X) \otimes_A^L D \to X$ is an isomorphism in $\mathcal{D}(A)$.

Theorem 5.4 (Foxby equivalence). [15, Theorem 2.5] There are equivalences of categories as follows.

\[\mathcal{A}(A) \xrightarrow{-\otimes_A^L D} \mathcal{B}(A) \]
\[\mathcal{F}(A) \xrightarrow{-\otimes_A^L D} \mathcal{I}(A). \]

Lemma 5.5. $\mathcal{R}(A) = \mathcal{A}(A)$.

Proof. Let $X \in \mathcal{D}^b_{fg}(A)$. We have the following commutative diagram

\[\begin{array}{ccc}
\mathcal{R}\text{Hom}_A(D, X) & \xrightarrow{\delta_X} & \mathcal{R}\text{Hom}_A(D, X \otimes_A^L D) \\
\downarrow & & \downarrow \\
\mathcal{R}\text{Hom}_A(D, X \otimes_A^L D) & \xrightarrow{\cong} & \mathcal{R}\text{Hom}_A(D, X \otimes_A^L \mathcal{R}\text{Hom}_A(A, D)) \\
\end{array} \]

so γ_X is an isomorphism if and only if so is δ_X. If $\mathcal{R}\text{Hom}_A(X, A) \in \mathcal{D}^b_{fg}(A^{\text{op}})$, then

\[X \otimes_A^L D \cong X \otimes_A^L \mathcal{R}\text{Hom}_A(A, D) \cong \mathcal{R}\text{Hom}_A^{\text{op}}(\mathcal{R}\text{Hom}_A(X, A), D) \]

by Lemma 2.2(3), so $X \otimes_A^L D \in \mathcal{D}^b_{fg}(A)$. Similarly, if $X \otimes_A^L D \in \mathcal{D}^b_{fg}(A)$, then

\[\mathcal{R}\text{Hom}_A(X, A) \cong \mathcal{R}\text{Hom}_A(X, \mathcal{R}\text{Hom}_A(D, D)) \cong \mathcal{R}\text{Hom}_A(X \otimes_A^L D, D) \]

by Lemma 2.2(2), so $\mathcal{R}\text{Hom}_A(X, A) \in \mathcal{D}^b_{fg}(A^{\text{op}})$. \qed

Lemma 5.6. The following hold.

(1) If $X \in \mathcal{A}(A)$, then $\mathcal{R}\text{Hom}_A(X, D) \in \mathcal{B}(A^{\text{op}})$.
(2) If $X \in \mathcal{B}(A^{\text{op}})$, then $\mathcal{R}\text{Hom}_A^{\text{op}}(X, D) \in \mathcal{A}(A)$.

Proof. (1): If $X \in \mathcal{A}(A)$, then $X \in \mathcal{R}(A)$ by Lemma 5.5, so we can compute

\[\mathcal{R}\text{Hom}_A^{\text{op}}(D, \mathcal{R}\text{Hom}_A(X, D)) \cong \mathcal{R}\text{Hom}_A(X, A) \in \mathcal{D}^b_{fg}(A^{\text{op}}) \]

by Lemma 2.2(1). The commutative diagram

\[\begin{array}{ccc}
\mathcal{R}\text{Hom}_A(X, D) & \xrightarrow{\cong} & D \otimes_A^L \mathcal{R}\text{Hom}_A(X, A) \\
\downarrow & & \downarrow \\
\mathcal{R}\text{Hom}_A^{\text{op}}(D, \mathcal{R}\text{Hom}_A(X, D)) & \xrightarrow{\cong} & \mathcal{R}\text{Hom}_A^{\text{op}}(X, A) \otimes_A^L D \\
\end{array} \]

shows that $\xi_{\mathcal{R}\text{Hom}_A(X, D)}$ is an isomorphism. Thus $\mathcal{R}\text{Hom}_A(X, D) \in \mathcal{B}(A^{\text{op}})$.

(2): Similar to the proof of (1). \qed
We now obtain characterizations of AS-Gorenstein algebras as follows.

Theorem 5.7. The following are equivalent.

1. A is AS-Gorenstein.
2. $\text{G-dim}_A X < \infty$ for any $X \in \mathcal{D}^b(fg)(A)$.
3. $\text{G-dim}_A M < \infty$ for any $M \in \text{grmod} A$.
4. $\text{G-dim}_A k < \infty$.
5. $\mathcal{A}(A) = \mathcal{D}^b_{fg}(A)$.
6. $\mathcal{A}^0(A) = \text{grmod} A$.
7. $k \in \mathcal{A}^0(A)$.
8. $B(A) = \mathcal{D}^b_{fg}(A)$.
9. $B^0(A) = \text{grmod} A$.
10. $k \in B^0(A)$.

(i)op The opposite version of (i) for $2 \leq i \leq 10$.

Proof. The implications (2) \Rightarrow (3) \Rightarrow (4), (5) \Rightarrow (6) \Rightarrow (7), and (8)op \Rightarrow (9)op \Rightarrow (10)op are clear. Lemma 5.5 tell us that (2), (5), and (4), (7). We prove that (1) \Rightarrow (2), (1) \Rightarrow (8)op, (4) \Rightarrow (1) and (10)op \Rightarrow (7). Since the condition (1) is left-right symmetry, the rest follows.

(1) \Rightarrow (2): Since A has finite right and left self-injective dimension, for any $X \in \mathcal{D}^b_{fg}(A)$, we see that $R\text{Hom}_A(X, A) \in \mathcal{D}^b_{fg}(A^{op})$ and

$$R\text{Hom}_{A^{op}}(R\text{Hom}_A(X, A), A) \cong X \otimes_A R\text{Hom}_{A^{op}}(A, A) \cong X$$

by Lemma 2.2(3).

(1) \Rightarrow (8)op: If A is AS-Gorenstein, then $D \cong A_v(-\ell)[d]$ in $\mathcal{D}(A^e)$, so

$$D \otimes_A R\text{Hom}_{A^{op}}(D, X) \cong R\text{Hom}_{A^{op}}(R\text{Hom}_A(D, D), X) \cong X$$

for any $X \in \mathcal{D}^b_{fg}(A^{op})$ by Lemma 2.2(3).

(4) \Rightarrow (1): If $\text{G-dim}_A k < \infty$, then

$$\text{id}_A A = \sup R\text{Hom}_A(k, A) = \text{G-dim}_A k < \infty$$

by [13, Lemma 1.10] and Lemma 3.2(1), so we have the result by Theorem 5.2.

(10)op \Rightarrow (7): If $k \in B^0(A^{op})$, then $k \cong R\text{Hom}_{A^{op}}(k, D) \in \mathcal{A}^0(A)$ by [21, Proposition 4.4] and Lemma 5.6(2). □

Rogalski and Sierra’s example [16, Proposition 5.11] shows that there is a counterexample for (4) \Rightarrow (1) if A does not have a balanced dualizing complex. We remark that Theorem 5.7 does not imply Propositions 3.9 and 3.10 because the existence of a balanced dualizing complex is slightly stronger than the χ-condition.

Definition 5.8. Let A be a connected graded algebra.

1. An A-A bimodule ω_A is called a balanced dualizing module if $\omega_A[d]$ is a balanced dualizing complex over A for some $d \in \mathbb{Z}$.
2. A is balanced Cohen-Macaulay if it has a balanced dualizing module.

Lemma 5.9. If $D \in \mathcal{A}(A)$ then A is balanced Cohen-Macaulay.

Proof. By Lemma 5.5, $\text{G-dim}_A D < \infty$. Since $\text{depth}_A D = \inf R\text{Hom}_A(k, D) = \inf k = 0$ by [21, Proposition 4.4], it follows from the Auslander-Bridger formula...
(Theorem 4.3) that $\text{G-dim}_A D = \text{depth}_A A$. On the other hand,
\[
\inf D = \inf \text{RHom}_{A^{op}}(\text{RHom}_A(D, A), A)
\geq \inf A - \sup \text{RHom}_A(D, A) = - \text{G-dim}_A D
\]
by Lemma 2.3. These imply that
\[- \inf D \leq \text{G-dim}_A D = \text{depth}_A A = - \sup D.
\]
Hence $\inf D = \sup D$, so A is AS-Cohen-Macaulay having a balanced dualizing module $\omega_A = h^{-d}(D)$ where $d = \text{G-dim}_A D$. □

The following is the main result of this paper. This says that if the balanced dualizing complex has finite G-dimension, then A is AS-Gorenstein. This is a generalization of [6, Theorem 3.5] (see Theorem 5.2) and a noncommutative version of [5, Theorem 3.3.5].

Theorem 5.10. The following are equivalent.

1. A is AS-Gorenstein.
2. $\mathcal{A}(A) = \mathcal{B}(A)$.
3. $D \in \mathcal{A}(A)$.
4. $A \in \mathcal{B}(A)$.

$(i)^{op}$ The opposite version of (i) for $2 \leq i \leq 4$.

Proof. (1) \Rightarrow (2): If A is AS-Gorenstein, then $\mathcal{A}(A) = \mathcal{D}_f^b(A) = \mathcal{B}(A)$ by Theorem 5.7.

(2) \Rightarrow (3): Since $D \in \mathcal{I}(A) \subseteq \mathcal{B}(A)$, it follows that $D \in \mathcal{A}(A)$.

(3) \Leftrightarrow (4)op: By Lemma 5.6.

(3) $^p (4) \Rightarrow (1)$: By Lemma 5.9, A is AS-Cohen-Macaulay with a balanced dualizing module ω_A. Let
\[
0 \rightarrow K \rightarrow F \rightarrow \omega_A \rightarrow 0
\]
be an exact sequence in $\text{grmod} A^{op}$, where F is a free A^{op}-module. Since $F, \omega_A \in \mathcal{B}^0(A^{op})$, we see that $K \in \mathcal{B}^0(A^{op})$. It follows from Lemma 2.4 that
\[
\sup \text{RHom}_{A^{op}}(\omega_A, K) = \sup \omega_A + \sup \text{RHom}_{A^{op}}(\omega_A, K)
= \sup(\omega_A \otimes_A^L \text{RHom}_{A^{op}}(\omega_A, K))
= \sup(D \otimes_A^L \text{RHom}_{A^{op}}(D, K)) = \sup K = 0,
\]
so $\text{Ext}^i_{A^{op}}(\omega_A, K) = 0$ for all $i > 0$. This means that the exact sequence (5.3) splits, so ω_A is free. Hence A is AS-Gorenstein by [15, Corollary 5.9].

The rest follows from left-right symmetry. □

The ideas of the next corollary come from [15, Corollary 5.6].

Corollary 5.11. A is AS-Gorenstein if and only if there exists a totally reflexive module having finite injective dimension.

Proof. If A is AS-Gorenstein, then A is a totally reflexive module with finite injective dimension. Conversely, suppose that there exists a totally reflexive module M having finite injective dimension. Since M has finite injective dimension,
\[
M \cong \text{RHom}_A(D, M) \otimes_A^L D
\]
by Foxby equivalence (Theorem 5.4), so it follows that
\[0 = \sup M = \sup (\text{RHom}_A(D, M) \otimes^L_A D) = \sup \text{RHom}_A(D, M) - \text{depth}_A A \quad (5.4) \]
by Lemma 2.4. Moreover, \(\text{RHom}_A(D, M) \) has finite projective dimension by Foxby equivalence. We can compute
\[
\text{depth} \text{RHom}_A(D, M) = - \sup \text{RHom}_A(\text{RHom}_A(D, M), D)
= - \sup \text{RHom}_A(\text{RHom}_A^{op}(M, D), A, D)
= - \sup (\text{RHom}_A(D, A) \otimes^L_A \text{RHom}_A(M, D))
= - \sup D - \sup \text{RHom}_A(M, D)
= \text{depth}_A A + \text{depth}_A M,
\]
by Lemma 4.2, Lemma 2.2(1) and Lemma 2.4, so it follows that
\[
\text{pd}_A \text{RHom}_A(D, M) = \text{depth}_A A - \text{depth}_A \text{RHom}_A(D, M) \overset{(5.5)}{=} - \text{depth}_A M. \quad (5.6)
\]
On the other hand, similar to (5.2), we have
\[
\inf \text{RHom}_A(D, M) \geq - \text{pd}_A \text{RHom}_A(D, M).
\]
These imply that
\[
- \inf \text{RHom}_A(D, M) \overset{(5.7)}{\leq} \text{pd}_A \text{RHom}_A(D, M) \overset{(5.6)}{=} - \text{depth}_A M
= - \text{depth}_A A \overset{(5.4)}{=} - \sup \text{RHom}_A(D, M).
\]
Thus \(\inf \text{RHom}_A(D, M) = \sup \text{RHom}_A(D, M) \). Let \(N = h^d \text{RHom}_A(D, M) \in \text{grmod}_A \) where \(d = \text{depth}_A A \). Then \(N[-d] \cong \text{RHom}_A(D, M) \in \mathcal{D}(A) \). We see
\[
\text{pd}_A N = \sup \text{RHom}_A(N[-d], A) + d = \text{pd}_A \text{RHom}_A(D, M) + \text{depth}_A A = 0.
\]
So \(N \) is free. Put \(N = \bigoplus_i A(s_i) \). Since
\[
\bigoplus_i D(s_i)[-d] \cong (N \otimes^L_A D)[-d] \cong N[-d] \otimes^L_A D \cong \text{RHom}_A(D, M) \otimes^L_A D \cong M \in \mathcal{A}(A),
\]
we obtain \(D \in \mathcal{A}(A) \) by Lemma 3.6. Hence \(A \) is AS-Gorenstein by Theorem 5.10. \(\square \)

Acknowledgment. The author would like to give his deep gratitude to Izuru Mori for a lot of valuable discussions and helpful suggestions.

References

Department of Mathematics, Graduate School of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
E-mail address: skueyam@ipc.shizuoka.ac.jp