GELFAND-KIRILLOV DIMENSION
FOR QUANTIZED WEYL ALGEBRAS

NoBUYUKI FUKUDA

Abstract. We obtain an analogue of Bernstein’s inequality for quantized Weyl alge-

bras.
1. Introduction
Let k be a field. For an n-tuple ¢§ = (g1, - ,qn) € ()™ and n x n matrix
A = (\i;) over k such that \;; =1 and \;; = )\;il for all 4, j, the n-th quantized Weyl
algebra AT™ is the k-algebra generated by the elements xy,--- , %, Y1, -+ ,Yn With

the following relations:

QL'i.’Ej = q:')\ijle'ia

Yillj = NijY;iVYis
TiY; = AjilYTis

(1.1) Vit = 4 Ajit i,
j-1

iy — Gy5rs =1+ Y (@ — Dy,

=1

(T1y1 — ey = 1),

where 1 <i < j <n. See [AD, 3.4].

This algebra A%Z* | appeared in the work of Maltsiniotis on noncommutative differ-
ential calculus [Ma], is regarded as a g-analogue of the Weyl algebra A,,.

Bernstein’s inequality says that, if M is a nonzero module over the Weyl algebra
Ay, then the Gelfand-Kirillov dimension GKdim(M) > n. The purpose of this note
is to obtain an analogue of this result for quantized Weyl algebra AZ*. To this end,
a simple localization of AZ* studied in [J] plays a important role.

Throughout this note, let §, A be as above, and suppose that no ¢; is a root of
unity.

For ring theorical notions including localizations, filtrations and Gelfand-Kirillov
dimension, we refer to [McR].
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2. Preliminaries

For1<i<n,let z; =1+ Zle(ql — D)yix;. By [J, 2.8] these elements satisfy the
following relations:

{ YiZj if j <1, { TiZj if j <1,
2y = e T =9 _ e
2.1) qiyizy if § >4, q; wiz; ifj >,

ZiZj = ZjZi.

Thus, for each 4, the set Z; = {2 }s>¢ is an Ore set in AZA and theset Z = 2, --- 2,
is too. We denote by BZ* the localization of AZ* at Z.

Proposition 2.2 [J, Thm. 3.2]. Suppose that no q; is a root of unity. Then BI"
is simple. In particular BZ™ has no nonzero finite-dimensional module.

Let us consider standard filtrations for A = AZ* and B = BZ*.

PuwwV = k+key + -+ kay, + ky1 + -+ + kyn. This is a (finite-dimensional)
generating subspace of A, that is, A = ",5, V! where VY = k. Then A has the
filtration B(A) defined by -

Bs(A) = Z vt
=0

For the localization B of A, the subspace W = kxy + kxngl + -+ kxnzrlll +

kyr+---+kyn+kzn+-- -+ kz, + kzl_l -+ +kz 1 is a generating subspace. Denote
by I'(B) the filtration of B associated with the generating subspace W. Thus

Iy(B) = Z wt.
=0

A k-algebra R is called semi-commutative if R is generated as a k-algebra generated
by elements 71, - - - , 7y, such that r;r; = p;;7;r; for 1 <i4,j < n, where p;; € k* ([Mc,
3.7]).

Lemma 2.3. The graded algebra grrB of BI™ associated with the filtration T'(B) is
semi-commutative.

Proof. This is clear from the relations (1.1), (2.1) and the observation that z;2; ' y; —
Qiyixiz;ll =1 for each . O

By the lemma we can apply [Mc, Thm.3.8] to B, so the following proposition is
obtained. Also see [McP, Sect. 5] .

Proposition 2.4. Let notations be as above.

(1) For any finitely generated B-module M, the Gelfand Kirillov dimension GKdimp (M)
18 nonnegative integer.

(2) For any nonzero finitely generated B-module M, there exists a nonnegative
integer eg(M) > 1 such that

ep(M) =ep(L) +ep(N)



for any exact sequence 0 — L — M — N — 0 of finitely generated B-modules with
(3) For a B-module with finite length, the endmorphism ring Endg(M) of M is
algebraic over k.

ep(M) is called the multiplicity of M.

3. Main Results

Theorem 3.1. Suppose that no q; is a root of unity. Let M be a nonzero BIA-

module. Then
n < GKdimgq.a (M) < 2n.

Proof. We modify the proof of [McR, Prop.5.5] to prove the theorem.

Write B,, = BZ*. Let M be a nonzero B-module. Since GKdim(B) = 2n by [GL,
Prop.3.4], it follows that GKdimp(M) < 2n.

We will show the inequality n < GKdimpg(M) by induction on n. We can assume
that M is finitely generated. If n = 1, it is clear from Proposition 2.4 (1) and
Proposition 2.2. Assume that the inequality holds for n — 1. Let ¢’ = (g1, -+ , Gn_1),
A’ be the subarray (X\ij)1<ij<n—1 of A. Then B,,_; = Bf;f}/ can be regarded as a
subalgebra of B,. If GKdimp (M) < n, then GKdimp_ (M) < n —1. We claim
that M has finite length as a B,,_j-module. It is sufficient to show that any finitely
generated B,,_i-submodule of M has finite length < ep_ (M). Let N be a finitely
generated nonzero B,_i-submodule of M. By the inductive hypothesis, one sees
that n — 1 < GKdimp, ,(N) < GKdimpg, ,(M) < GKdimpg, (M) = n — 1, so that
GKdimp, ,(N)= GKdimp, (M) =n —1. Then it follows from [McP, Prop.5.7] that
en, ,(N) < ep, (M). Using Proposition 2.4(2), one sees that N has finite length
<ep,,(N)<ep,(M).

Now, by Proposition 2.4 (3), Endpg, ,(M) is algebraic over k. From the relations
(2.1), left action by znzT;ll on M is a left B, _i-module endomorphism of M. More-
over, since M is faithful as a B-module, the k-algebra generated by znzgil can be
regarded as a sublagebra of Endp, _, (M). However it is easy to check that 2,2, ', is
algebraic independent over k, which is a contradiction. [J

Corollary 3.2. Suppose that no q; is a root of unity. Let M be a finitely generated
AZA module. If M is not Z-torsion, then

n < GKdimA?{A (M) < 2n.

Proof. Put A= A%A B = BZA First, we claim that GKdim (M) = GKdimp(B® 4
M) for any Z-torsionfree finitely generated nonzero A -module M. We modify the
proof of [GL, Lemma 3.3] to prove the claim. Let V' be the generating subspace of A
described before. It is ovbious that W =V + kz; !is a generating subspace of the
localization Z| 1A of A at Z;. There exists nonnegative integer ¢ such that W™ C
2y V™ for each m. Let My be a finite-dimensional generating subspace of the A-
module M. Then W™ My C 27 ™V™ My, so that dim, W™ My < dim; V"™ M,. Since
M is Z;-torsionfree, we can regard M as an A-submodule of Z;7'M = Z7'A®4 M
via the map M — Zl_lM, m — 1 ® m. In particular My is a generating subspace



of the Z; ' A-module Z; 'M. Thus GKdim-1,(27'M) < GKdima(M). Clearly
GKdim A(Z27M) > GKdim4(M). Hence GKdim A(Z7TM) = GKdim 4 (M).
By continuing similar argument, we can prove the claim.

Let M be a non-Z-torsion finitely generated A-module. Denote by T(M) the

largest Z-torsion submodule of M. Since M /T (M) is a Z-torsionfree nonzero module,
it holds that

GKdim 4 (M/T(M)) = GKdimz -1 4(Z~Y(M/T(M))) > n

by Theorem 3.1. It follows from [McR, 8.3.2] that GKdim 4 (M /T (M)) < GKdim4 (M),
which implies that n < GKdim4 (M).
The upper bound is clear since GKdim(A) = 2n (see [GL, Prop.3.4]). O

Remark 3.3. The corollary fails without the condition on a A%*-module M. In
fact, for 1 < i < n, there exists a Z-torsion finitely generated AZ’A—module M with
GKdim 4q.4 (M) =i. Put A = ATA Tet L = Ay;q + -+ Ay, + Azy + - + Axy,.
The A-module M = A/L has the filtration B’(M) induced by the filtration B(A) of
A. Thus B,(M) = (Bs(A) + L)/L is isomorphic as a vector space to

@ ky$t -y,

i+ +a; <s

Hence dimy,B,(M) = (“**). This implies that GKdim (M) = i.

Another Bernstein’s inequality for quantized Weyl algebras has been considered by
Demidov in [D].

References

[AD] J. Alev and F. Dumas, Sur le corps des fractions de certaines algebres quan-
tique, J. Algebra 170 (1994) 229-265.

[D] E.E. Demidov, Modules over a Weyl quantum algebra, Moscow Univ. Math.
Bull. 48 (1993) 49-51.

[GL] K.R. Goodearl and T.H. Lenagan, Catenarity in quantum algebras, J. Pure
Appl. Algebra 111 (1996) 123-142.

[J] D.A. Jordan, A simple localization of quantized Weyl algebra, J. Algebra 174
(1995) 267-281.

[Ma] G. Maltsiniotis, Groupes quantique et structures differéntielles, C. R. Acad.
Sci. Paris, Sér. T Math. 311 (1990) 831-834.

[Mc] J.C. McConnell, Quantum groups, filtered rings and Gelfand-Kirillov dimen-
sion, in ”"Lecture Notes in Mathematics, Vol. 1448, pp. 139-147, Springer-
Verlag, 1990.

[McP] J.C. McConnell and J.J. Pettit, Crossed Products and multiplicative analogues
of Weyl algebras, J. London Math. Soc. (2) 38 (1988) 47-55.

[McR] J. C. McConnell and J. C. Robson, ”Noncommutative Noetherian Rings,”
Wiley-Interscience, New York, 1987.

Department of Mathematics, Okayama University, Okayama 700, Japan
E-mail address: fukuda@math.ems.okayama-u.ac.jp



