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Abstract. We obtain an analogue of Bernstein’s inequality for quantized Weyl alge-
bras.

1. Introduction

Let k be a field. For an n-tuple q̄ = (q1, · · · , qn) ∈ (k×)n and n × n matrix
Λ = (λij) over k such that λii = 1 and λij = λ−1

ji for all i, j, the n-th quantized Weyl
algebra Aq̄,Λ

n is the k-algebra generated by the elements x1, · · · , xn, y1, · · · , yn with
the following relations:

(1.1)

xixj = qiλijxjxi,

yiyj = λijyjyi,

xiyj = λjiyjxi,

yixj = q−1
i λjixjyi,

xjyj − qjyjxj = 1 +
j−1∑

l=1

(ql − 1)ylxl,

(x1y1 − q1y1x1 = 1),

where 1 ≤ i < j ≤ n. See [AD, 3.4].
This algebra Aq̄,Λ

n , appeared in the work of Maltsiniotis on noncommutative differ-
ential calculus [Ma], is regarded as a q-analogue of the Weyl algebra An.

Bernstein’s inequality says that, if M is a nonzero module over the Weyl algebra
An, then the Gelfand-Kirillov dimension GKdim(M) ≥ n. The purpose of this note
is to obtain an analogue of this result for quantized Weyl algebra Aq̄,Λ

n . To this end,
a simple localization of Aq̄,Λ

n studied in [J] plays a important role.
Throughout this note, let q̄, Λ be as above, and suppose that no qi is a root of

unity.
For ring theorical notions including localizations, filtrations and Gelfand-Kirillov

dimension, we refer to [McR].
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2. Preliminaries

For 1 ≤ i ≤ n, let zi = 1 +
∑i

l=1(ql − 1)ylxl. By [J, 2.8] these elements satisfy the
following relations:

(2.1)
zjyi =

{
yizj if j < i,

qiyizj if j ≥ i,
zjxi =

{
xizj if j < i,

q−1
i xizj if j ≥ i,

zizj = zjzi.

Thus, for each i, the set Zi = {zs
i }s≥0 is an Ore set in Aq̄,Λ

n , and the set Z = Z1 · · · Zn

is too. We denote by Bq̄,Λ
n the localization of Aq̄,Λ

n at Z.

Proposition 2.2 [J, Thm. 3.2]. Suppose that no qi is a root of unity. Then Bq̄,Λ
n

is simple. In particular Bq̄,Λ
n has no nonzero finite-dimensional module.

Let us consider standard filtrations for A = Aq̄,Λ
n and B = Bq̄,Λ

n .
Put V = k + kx1 + · · · + kxn + ky1 + · · · + kyn. This is a (finite-dimensional)

generating subspace of A, that is, A =
∑

l≥0 V l, where V 0 = k. Then A has the
filtration B(A) defined by

Bs(A) =
s∑

l=0

V l.

For the localization B of A, the subspace W = kx1 + kx2z
−1
1 + · · · + kxnz−1

n−1 +
ky1 + · · ·+ kyn + kz1 + · · ·+ kzn + kz−1

1 · · ·+ kz−1
n is a generating subspace. Denote

by Γ(B) the filtration of B associated with the generating subspace W . Thus

Γs(B) =
s∑

l=0

W l.

A k-algebra R is called semi-commutative if R is generated as a k-algebra generated
by elements r1, · · · , rm such that rirj = µijrjri for 1 ≤ i, j ≤ n, where µij ∈ k× ([Mc,
3.7]).

Lemma 2.3. The graded algebra grΓB of Bq̄,Λ
n associated with the filtration Γ(B) is

semi-commutative.

Proof. This is clear from the relations (1.1), (2.1) and the observation that xiz
−1
i−1yi−

qiyixiz
−1
i−1 = 1 for each i. ¤

By the lemma we can apply [Mc, Thm.3.8] to B, so the following proposition is
obtained. Also see [McP, Sect. 5] .

Proposition 2.4. Let notations be as above.
(1) For any finitely generated B-module M , the Gelfand Kirillov dimension GKdimB(M)

is nonnegative integer.
(2) For any nonzero finitely generated B-module M , there exists a nonnegative

integer eB(M) ≥ 1 such that

eB(M) = eB(L) + eB(N)



for any exact sequence 0 → L → M → N → 0 of finitely generated B-modules with
GKdimB(L) = GKdimB(M) = GKdimB(N).

(3) For a B-module with finite length, the endmorphism ring EndB(M) of M is
algebraic over k.

eB(M) is called the multiplicity of M .

3. Main Results

Theorem 3.1. Suppose that no qi is a root of unity. Let M be a nonzero Bq̄,Λ
n -

module. Then
n ≤ GKdimBq̄,Λ

n
(M) ≤ 2n.

Proof. We modify the proof of [McR, Prop.5.5] to prove the theorem.
Write Bn = Bq̄,Λ

n . Let M be a nonzero B-module. Since GKdim(B) = 2n by [GL,
Prop.3.4], it follows that GKdimB(M) ≤ 2n.

We will show the inequality n ≤ GKdimB(M) by induction on n. We can assume
that M is finitely generated. If n = 1, it is clear from Proposition 2.4 (1) and
Proposition 2.2. Assume that the inequality holds for n− 1. Let q̄′ = (q1, · · · , qn−1),
Λ′ be the subarray (λij)1≤i,j≤n−1 of Λ. Then Bn−1 = Bq̄′,Λ′

n−1 can be regarded as a
subalgebra of Bn. If GKdimBn(M) < n, then GKdimBn(M) ≤ n − 1. We claim
that M has finite length as a Bn−1-module. It is sufficient to show that any finitely
generated Bn−1-submodule of M has finite length ≤ eBn(M). Let N be a finitely
generated nonzero Bn−1-submodule of M . By the inductive hypothesis, one sees
that n − 1 ≤ GKdimBn−1(N) ≤ GKdimBn−1(M) ≤ GKdimBn(M) = n − 1, so that
GKdimBn−1(N) = GKdimBn(M) = n− 1. Then it follows from [McP, Prop.5.7] that
eBn−1(N) ≤ eBn(M). Using Proposition 2.4(2), one sees that N has finite length
≤ eBn−1(N) ≤ eBn(M).

Now, by Proposition 2.4 (3), EndBn−1(M) is algebraic over k. From the relations
(2.1), left action by znz−1

n−1 on M is a left Bn−1-module endomorphism of M . More-
over, since M is faithful as a B-module, the k-algebra generated by znz−1

n−1 can be
regarded as a sublagebra of EndBn−1(M). However it is easy to check that znz−1

n−1 is
algebraic independent over k, which is a contradiction. ¤
Corollary 3.2. Suppose that no qi is a root of unity. Let M be a finitely generated
Aq̄,Λ

n -module. If M is not Z-torsion, then

n ≤ GKdimAq̄,Λ
n

(M) ≤ 2n.

Proof. Put A = Aq̄,Λ
n , B = Bq̄,Λ

n . First, we claim that GKdimA(M) = GKdimB(B⊗A

M) for any Z-torsionfree finitely generated nonzero A -module M . We modify the
proof of [GL, Lemma 3.3] to prove the claim. Let V be the generating subspace of A
described before. It is ovbious that W = V + kz−1

1 is a generating subspace of the
localization Z−1

1 A of A at Z1. There exists nonnegative integer t such that Wm ⊂
z−m
1 V mt for each m. Let M0 be a finite-dimensional generating subspace of the A-

module M . Then WmM0 ⊂ z−m
1 V mtM0, so that dimkWmM0 ≤ dimkV mtM0. Since

M is Z1-torsionfree, we can regard M as an A-submodule of Z−1
1 M = Z−1

1 A ⊗A M
via the map M → Z−1

1 M , m 7→ 1 ⊗ m. In particular M0 is a generating subspace



of the Z−1
1 A-module Z−1

1 M . Thus GKdimZ−1
1 A(Z−1

1 M) ≤ GKdimA(M). Clearly
GKdimZ−1

1 A(Z−1
1 M) ≥ GKdimA(M). Hence GKdimZ−1

1 A(Z−1
1 M) = GKdimA(M).

By continuing similar argument, we can prove the claim.
Let M be a non-Z-torsion finitely generated A-module. Denote by T (M) the

largest Z-torsion submodule of M . Since M/T (M) is a Z-torsionfree nonzero module,
it holds that

GKdimA(M/T (M)) = GKdimZ−1A(Z−1(M/T (M))) ≥ n

by Theorem 3.1. It follows from [McR, 8.3.2] that GKdimA(M/T (M)) ≤ GKdimA(M),
which implies that n ≤ GKdimA(M).

The upper bound is clear since GKdim(A) = 2n (see [GL, Prop.3.4]). ¤
Remark 3.3. The corollary fails without the condition on a Aq̄,Λ

n -module M . In
fact, for 1 ≤ i ≤ n, there exists a Z-torsion finitely generated Aq̄,Λ

n -module M with
GKdimAq̄,Λ

n
(M) = i. Put A = Aq̄,Λ

n . Let L = Ayi+1 + · · · + Ayn + Ax1 + · · · + Axn.
The A-module M = A/L has the filtration B′(M) induced by the filtration B(A) of
A. Thus B′s(M) = (Bs(A) + L)/L is isomorphic as a vector space to

⊕

α1+···+αi≤s

kyα1
1 · · · yαi

i .

Hence dimkB′s(M) =
(
i+s

i

)
. This implies that GKdimA(M) = i.

Another Bernstein’s inequality for quantized Weyl algebras has been considered by
Demidov in [D].
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