GELFAND-KIRILLOV DIMENSION FOR QUANTIZED WEYL ALGEBRAS

Nobuyuki Fukuda

ABSTRACT. We obtain an analogue of Bernstein's inequality for quantized Weyl alge-

1. Introduction

Let k be a field. For an n-tuple $\bar{q}=(q_1,\cdots,q_n)\in (k^\times)^n$ and $n\times n$ matrix $\Lambda=(\lambda_{ij})$ over k such that $\lambda_{ii}=1$ and $\lambda_{ij}=\lambda_{ji}^{-1}$ for all i,j, the n-th quantized Weyl algebra $A_n^{\bar{q},\Lambda}$ is the k-algebra generated by the elements $x_1,\dots,x_n,y_1,\dots,y_n$ with the following relations:

$$x_{i}x_{j} = q_{i}\lambda_{ij}x_{j}x_{i},$$

$$y_{i}y_{j} = \lambda_{ij}y_{j}y_{i},$$

$$x_{i}y_{j} = \lambda_{ji}y_{j}x_{i},$$

$$y_{i}x_{j} = q_{i}^{-1}\lambda_{ji}x_{j}y_{i},$$

$$x_{j}y_{j} - q_{j}y_{j}x_{j} = 1 + \sum_{l=1}^{j-1}(q_{l} - 1)y_{l}x_{l},$$

$$(x_{1}y_{1} - q_{1}y_{1}x_{1} = 1),$$

where $1 \leq i < j \leq n$. See [AD, 3.4]. This algebra $A_n^{\bar{q},\Lambda}$, appeared in the work of Maltsiniotis on noncommutative differential calculus [Ma], is regarded as a q-analogue of the Weyl algebra A_n .

Bernstein's inequality says that, if M is a nonzero module over the Weyl algebra A_n , then the Gelfand-Kirillov dimension $\operatorname{GKdim}(M) \geq n$. The purpose of this note is to obtain an analogue of this result for quantized Weyl algebra $A_n^{\bar{q},\Lambda}$. To this end, a simple localization of $A_n^{\bar{q},\Lambda}$ studied in [J] plays a important role.

Throughout this note, let \bar{q} , Λ be as above, and suppose that no q_i is a root of unity.

For ring theorical notions including localizations, filtrations and Gelfand-Kirillov dimension, we refer to [McR].

¹⁹⁹¹ Mathematics Subject Classification. Primary 16P90; Secondary 17B37. Key words and phrases. Quantized Weyl algebras, Gelfand-kirillov dimension, Bernstein's inequality.

2. Preliminaries

For $1 \le i \le n$, let $z_i = 1 + \sum_{l=1}^{i} (q_l - 1)y_l x_l$. By [J, 2.8] these elements satisfy the following relations:

$$z_i z_j = z_j z_i.$$

Thus, for each i, the set $\mathcal{Z}_i = \{z_i^s\}_{s \geq 0}$ is an Ore set in $A_n^{\bar{q},\Lambda}$, and the set $\mathcal{Z} = \mathcal{Z}_1 \cdots \mathcal{Z}_n$ is too. We denote by $B_n^{\bar{q},\Lambda}$ the localization of $A_n^{\bar{q},\Lambda}$ at \mathcal{Z} .

Proposition 2.2 [J, Thm. 3.2]. Suppose that no q_i is a root of unity. Then $B_n^{\bar{q},\Lambda}$ is simple. In particular $B_n^{\bar{q},\Lambda}$ has no nonzero finite-dimensional module.

Let us consider standard filtrations for $A = A_n^{\bar{q},\Lambda}$ and $B = B_n^{\bar{q},\Lambda}$.

Put $V = k + kx_1 + \cdots + kx_n + ky_1 + \cdots + ky_n$. This is a (finite-dimensional) generating subspace of A, that is, $A = \sum_{l \geq 0} V^l$, where $V^0 = k$. Then A has the filtration $\mathcal{B}(A)$ defined by

$$\mathcal{B}_s(A) = \sum_{l=0}^s V^l.$$

For the localization B of A, the subspace $W = kx_1 + kx_2z_1^{-1} + \cdots + kx_nz_{n-1}^{-1} + ky_1 + \cdots + ky_n + kz_1 + \cdots + kz_n + kz_1^{-1} + \cdots + kz_n^{-1}$ is a generating subspace. Denote by $\Gamma(B)$ the filtration of B associated with the generating subspace W. Thus

$$\Gamma_s(B) = \sum_{l=0}^s W^l.$$

A k-algebra R is called *semi-commutative* if R is generated as a k-algebra generated by elements r_1, \dots, r_m such that $r_i r_j = \mu_{ij} r_j r_i$ for $1 \le i, j \le n$, where $\mu_{ij} \in k^{\times}$ ([Mc, 3.7]).

Lemma 2.3. The graded algebra $gr_{\Gamma}B$ of $B_n^{\bar{q},\Lambda}$ associated with the filtration $\Gamma(B)$ is semi-commutative.

Proof. This is clear from the relations (1.1), (2.1) and the observation that $x_i z_{i-1}^{-1} y_i - q_i y_i x_i z_{i-1}^{-1} = 1$ for each i. \square

By the lemma we can apply [Mc, Thm.3.8] to B, so the following proposition is obtained. Also see [McP, Sect. 5] .

Proposition 2.4. Let notations be as above.

- (1) For any finitely generated B-module M, the Gelfand Kirillov dimension $GKdim_B(M)$ is nonnegative integer.
- (2) For any nonzero finitely generated B-module M, there exists a nonnegative integer $e_B(M) \ge 1$ such that

$$e_B(M) = e_B(L) + e_B(N)$$

for any exact sequence $0 \to L \to M \to N \to 0$ of finitely generated B-modules with $\operatorname{GKdim}_B(L) = \operatorname{GKdim}_B(M) = \operatorname{GKdim}_B(N)$.

(3) For a B-module with finite length, the endmorphism ring $\operatorname{End}_B(M)$ of M is algebraic over k.

 $e_B(M)$ is called the multiplicity of M.

3. Main Results

Theorem 3.1. Suppose that no q_i is a root of unity. Let M be a nonzero $B_n^{\bar{q},\Lambda}$ -module. Then

$$n \leq \operatorname{GKdim}_{B_{2}^{\bar{q},\Lambda}}(M) \leq 2n.$$

Proof. We modify the proof of [McR, Prop.5.5] to prove the theorem.

Write $B_n = B_n^{\bar{q},\Lambda}$. Let M be a nonzero B-module. Since GKdim(B) = 2n by [GL, Prop. 3.4], it follows that $GKdim_B(M) \leq 2n$.

We will show the inequality $n \leq \operatorname{GKdim}_B(M)$ by induction on n. We can assume that M is finitely generated. If n=1, it is clear from Proposition 2.4 (1) and Proposition 2.2. Assume that the inequality holds for n-1. Let $\bar{q'}=(q_1,\cdots,q_{n-1})$, Λ' be the subarray $(\lambda_{ij})_{1\leq i,j\leq n-1}$ of Λ . Then $B_{n-1}=B_{n-1}^{\bar{q'},\Lambda'}$ can be regarded as a subalgebra of B_n . If $\operatorname{GKdim}_{B_n}(M) < n$, then $\operatorname{GKdim}_{B_n}(M) \leq n-1$. We claim that M has finite length as a B_{n-1} -module. It is sufficient to show that any finitely generated B_{n-1} -submodule of M has finite length $\leq e_{B_n}(M)$. Let N be a finitely generated nonzero B_{n-1} -submodule of M. By the inductive hypothesis, one sees that $n-1 \leq \operatorname{GKdim}_{B_{n-1}}(N) \leq \operatorname{GKdim}_{B_{n-1}}(M) \leq \operatorname{GKdim}_{B_n}(M) = n-1$, so that $\operatorname{GKdim}_{B_{n-1}}(N) = \operatorname{GKdim}_{B_n}(M) = n-1$. Then it follows from [McP, Prop.5.7] that $e_{B_{n-1}}(N) \leq e_{B_n}(M)$. Using Proposition 2.4(2), one sees that N has finite length $\leq e_{B_{n-1}}(N) \leq e_{B_n}(M)$.

Now, by Proposition 2.4 (3), $\operatorname{End}_{B_{n-1}}(M)$ is algebraic over k. From the relations (2.1), left action by $z_n z_{n-1}^{-1}$ on M is a left B_{n-1} -module endomorphism of M. Moreover, since M is faithful as a B-module, the k-algebra generated by $z_n z_{n-1}^{-1}$ can be regarded as a sublagebra of $\operatorname{End}_{B_{n-1}}(M)$. However it is easy to check that $z_n z_{n-1}^{-1}$ is algebraic independent over k, which is a contradiction. \square

Corollary 3.2. Suppose that no q_i is a root of unity. Let M be a finitely generated $A_n^{\overline{q},\Lambda}$ -module. If M is not \mathcal{Z} -torsion, then

$$n \leq \operatorname{GKdim}_{A_{2}^{\bar{q},\Lambda}}(M) \leq 2n.$$

Proof. Put $A = A_n^{\bar{q},\Lambda}$, $B = B_n^{\bar{q},\Lambda}$. First, we claim that $\mathrm{GKdim}_A(M) = \mathrm{GKdim}_B(B \otimes_A M)$ for any \mathcal{Z} -torsionfree finitely generated nonzero A-module M. We modify the proof of [GL, Lemma 3.3] to prove the claim. Let V be the generating subspace of A described before. It is ovbious that $W = V + kz_1^{-1}$ is a generating subspace of the localization $\mathcal{Z}_1^{-1}A$ of A at \mathcal{Z}_1 . There exists nonnegative integer t such that $W^m \subset z_1^{-m}V^{mt}$ for each m. Let M_0 be a finite-dimensional generating subspace of the A-module M. Then $W^mM_0 \subset z_1^{-m}V^{mt}M_0$, so that $\dim_k W^mM_0 \leq \dim_k V^{mt}M_0$. Since M is \mathcal{Z}_1 -torsionfree, we can regard M as an A-submodule of $\mathcal{Z}_1^{-1}M = \mathcal{Z}_1^{-1}A \otimes_A M$ via the map $M \to \mathcal{Z}_1^{-1}M$, $m \mapsto 1 \otimes m$. In particular M_0 is a generating subspace

of the $\mathcal{Z}_1^{-1}A$ -module $\mathcal{Z}_1^{-1}M$. Thus $\operatorname{GKdim}_{\mathcal{Z}_1^{-1}A}(\mathcal{Z}_1^{-1}M) \leq \operatorname{GKdim}_A(M)$. Clearly $\operatorname{GKdim}_{\mathcal{Z}_1^{-1}A}(\mathcal{Z}_1^{-1}M) \geq \operatorname{GKdim}_A(M)$. Hence $\operatorname{GKdim}_{\mathcal{Z}_1^{-1}A}(\mathcal{Z}_1^{-1}M) = \operatorname{GKdim}_A(M)$. By continuing similar argument, we can prove the claim.

Let M be a non- \mathcal{Z} -torsion finitely generated A-module. Denote by T(M) the largest \mathcal{Z} -torsion submodule of M. Since M/T(M) is a \mathcal{Z} -torsionfree nonzero module, it holds that

$$\operatorname{GKdim}_A(M/T(M)) = \operatorname{GKdim}_{\mathcal{Z}^{-1}A}(\mathcal{Z}^{-1}(M/T(M))) \ge n$$

by Theorem 3.1. It follows from [McR, 8.3.2] that $\operatorname{GKdim}_A(M/T(M)) \leq \operatorname{GKdim}_A(M)$, which implies that $n \leq \operatorname{GKdim}_A(M)$.

The upper bound is clear since GKdim(A) = 2n (see [GL, Prop.3.4]). \square

Remark 3.3. The corollary fails without the condition on a $A_n^{\bar{q},\Lambda}$ -module M. In fact, for $1 \leq i \leq n$, there exists a \mathcal{Z} -torsion finitely generated $A_n^{\bar{q},\Lambda}$ -module M with $\operatorname{GKdim}_{A_n^{\bar{q},\Lambda}}(M) = i$. Put $A = A_n^{\bar{q},\Lambda}$. Let $L = Ay_{i+1} + \cdots + Ay_n + Ax_1 + \cdots + Ax_n$. The A-module M = A/L has the filtration $\mathcal{B}'(M)$ induced by the filtration $\mathcal{B}(A)$ of A. Thus $\mathcal{B}'_s(M) = (\mathcal{B}_s(A) + L)/L$ is isomorphic as a vector space to

$$\bigoplus_{\alpha_1+\cdots+\alpha_i\leq s} ky_1^{\alpha_1}\cdots y_i^{\alpha_i}.$$

Hence $\dim_k \mathcal{B}'_s(M) = \binom{i+s}{i}$. This implies that $\operatorname{GKdim}_A(M) = i$.

Another Bernstein's inequality for quantized Weyl algebras has been considered by Demidov in [D].

References

- [AD] J. Alev and F. Dumas, Sur le corps des fractions de certaines algèbres quantique, J. Algebra 170 (1994) 229–265.
 - [D] E.E. Demidov, Modules over a Weyl quantum algebra, Moscow Univ. Math. Bull. 48 (1993) 49–51.
- [GL] K.R. Goodearl and T.H. Lenagan, Catenarity in quantum algebras, J. Pure Appl. Algebra 111 (1996) 123–142.
 - [J] D.A. Jordan, A simple localization of quantized Weyl algebra, J. Algebra 174 (1995) 267–281.
- [Ma] G. Maltsiniotis, Groupes quantique et structures differéntielles, C. R. Acad. Sci. Paris, Sér. I Math. 311 (1990) 831–834.
- [Mc] J.C. McConnell, Quantum groups, filtered rings and Gelfand-Kirillov dimension, in "Lecture Notes in Mathematics, Vol. 1448," pp. 139–147, Springer-Verlag, 1990.
- [McP] J.C. McConnell and J.J. Pettit, Crossed Products and multiplicative analogues of Weyl algebras, J. London Math. Soc. (2) **38** (1988) 47–55.
- [McR] J. C. McConnell and J. C. Robson, "Noncommutative Noetherian Rings," Wiley-Interscience, New York, 1987.

DEPARTMENT OF MATHEMATICS, OKAYAMA UNIVERSITY, OKAYAMA 700, JAPAN $E\text{-}mail\ address$: fukuda@math.ems.okayama-u.ac.jp